

Effective from Session: 2020-2021							
Course Code	BE-520	BE-520 Title of the Course BIOINFORMATICS AND BIOLOGICAL DATABASES			Т	Р	С
Year	Ι	Semester	Ι	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	The course is study big da databases, in biological da mining of ger	a aimed to enable stude ta. The course is also cluding deals with the ta. The course highligh the and protein databanks	nts to explain ggenesis of Bioinformatics, theoretical and o emphasizing various databases like nucleic acid, DNA development of biological databases, display, annotation ats the applications of bioinformatics in the area of biolog s.	compu and a, and gical s	tational proteins retriev ciences	model struct al tools , statist	s to ural s of tical

	Course Outcomes
CO1	Understand the genesis of Bioinformatics, comparison with its allied disciplines, theoretical and computational models to study big data
CO2	Explain nucleic acid and protein sequence databases, structural databases, literature databases, genome and organism-specific databases
CO3	Understand development of biological databases, display, annotation, and retrieval tools of biological data.
CO4	Describe database similarity searching, biological file formats, and 3D structure visualization of biomacromolecules.
CO5	Explain applications of bioinformatics in the area of biological and biomedical sciences, statistical mining of gene and protein
	databanks.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	Introduction to Bioinformatics	Muction to Introduction to Bioinformatics: The Genesis of Bioinformatics, Bioinformatics Versus Other Disciplines, Developments from Linear Information to Multidimensional Structure organization, Mathematical and Computational Methods: Need of Mathematical Modeling, Fitting Models to Data.					
2	Concept and types of databases	Biological databanks: Types, Nucleic Acid and Protein Sequence Databases, Structural Databases, Literature databases, Genome and Organism-specific databases for example OMIM, TAIR, NCBI, TIGR, GOLD.	8	CO 2			
3	Access and Management of Database	Building biological databases, submitting sequences to databases, Database tools for displaying and annotating sequence data, Retrieval of biological data including Entrez, SRS, ARSA and DBGET/Link DB.	8	CO 3			
4	Homology modelling and data visualization Tools	Sequence similarity, identity and homology, definitions of homologues, orthologues, paralogues. Sequence file format: GenBank, Fasta and PIR format, Structure file format: pdb and mmCIF format, Visualization of 3-D structures using PyMOL, RasMol, SPDBV, CHIME, Discovery studio visualizer.	8	CO 4			
5	Applications of bioinformatics	Applications of Bioinformatics: Bioinformatics in Life and Environmental Sciences, Structural Biology Interface, Statistical mining of Gene and Protein Databanks.	8	CO 5			
Referen	ce Books:						
1. Funda	amental Concepts of Bio	informatics - Dan E. Krane, Michael L. Raymer, Pearson education.					
2. Seque	ence structure and Datab	ase – Des Higgins, Willice Taylor, oxford press					
3. Bioin	formatics: A Practical G	uide to the Analysis of Genes and Proteins, by Andreas D. Baxevanis, B. F. Francis Ouellette, Wi	ley-Intersci	ence,			
4. Seque	ence and Genome Analy	sis by David W. Mount - Cold Spring Harbor Laboratory					
5. Bioint	5. Bioinformatics and Functional Genomics; by Jonathan Pevsner; Wiley-Liss						
6. Introd	6. Introduction to Bioinformatics; Arthur M. Lesk; Oxford University Press						
e-Lear	rning Source:						

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502	1505
CO1	1	1	1	2	3	1	1	1	1	1	0	3	2	2	1
CO2	2	2	1	2	3	1	1	1	2	1	0	3	3	3	3
CO3	1	1	1	2	3	1	1	1	2	1	0	3	3	3	1
CO4	2	2	2	2	3	1	1	1	2	1	0	3	3	3	3
CO5	1	1	2	2	3	1	1	1	3	1	0	3	2	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:								
Course Code	MT503	Title of the Course	Applied Mathematics and Biostatistics	L	Т	Р	С	
Year	1st	Semester	1st	3	1	0	4	
Pro Poquisito	Mathematics and	Co roquisito	Basic concepts of Statistics and					
TTe-Requisite	Statistics	Co-requisite	Mathematics					
	The course is aimed to	develop the basic Mathematical skill	lls of engineering students that are	imper	ative fo	or effect	tive	
Course Objectives	understanding of engin fields of engineering an	nderstanding of engineering subjects. The topics introduced will serve as basic tools for specialized studies in many ields of engineering and technology.						
	1							

		Course Outcomes
CO1	1.	Understand the meaning of the derivative in terms of a rate of change and local linear approximation and should be able to use
		derivatives to solve a variety of problems.
	2.	Model a written description of a physical situation with a function, a differential equation, or an integral.
	3.	Develop an appreciation of calculus as a coherent body of knowledge and as a human accomplishment.
CO2	1.	Apply linear algebra concepts to model, solve, and analyze real-world situations.
	2.	Analyze mathematical statements and expressions (for example, to assess whether a particular statement is accurate, or to describe
		solutions of systems in terms of existence and uniqueness).
	3.	Construct, or give examples of, mathematical expressions that involve vectors, matrices, and linear systems of linear equations.
CO3	1.	How to translate real-world problems into probability models.
	2.	Basic probability axioms and rules and the moments of discrete and continuous random variables as well as be familiar with common
		named discrete and continuous random variables.
	3.	Apply basic statistical concepts commonly used in Health and Medical Sciences.
CO4	1.	Interpret results of commonly used statistical analyses in written summaries.
	2.	Demonstrate statistical reasoning skills correctly and contextually.
	3.	Use technology to find coefficient of correlation of a given set of data Interpret the meaning of the correlation coefficient in context.
CO5	1.	Use discrete and continuous probability distributions, including requirements, mean and variance, and making decisions.
	2.	Perform Test of Hypothesis as well as calculate confidence interval for a population parameter for single sample and two sample cases.
	3.	Learn non-parametric test such as the Chi-Square test for Independence as well as Goodness of Fit.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1		Differential calculus Function, Limit, Continuity and Differentiability, Differentiation of standard functions, Methods of Differentiation, Maxima and Minima. Integral Calculus-Indefinite integration of standard functions, Integration by substitution, by parts, by partial fractions						
2	Definition, Types of Matrix, Properties of Matrices. Addition, subtractions and multiplications, Inverse of Matrix, Determinants:- Properties of Determinants, Eigen Value 8 2 and Eigen Vectors, solution of simultaneous equations by Matrix Method and Cramer's rule.							
3	Sample Space and Events, Axioms of Probability, Conditional Probability, Independent Events, Bayes Theorem. Numerical Description of Data; Discrete and Continuous variable, Mean, Median, Mode, Range Quartiles, Standard Deviation Variance, Coefficient of Variation, Measures of skewness and Kurtosis by moments							
4		Scatter diagram, Karl Pearson's Correlation coefficient, Spearman's Rank Correlation Coefficient. Regression Coefficients and Regression lines. Method of least square, straight 8 4 line, Parabola, exponential curve. 8 4						
5		Binomial, Poisson and Normal distributions, Chi-Square test, Student's t-Test, F-test, Z-test. Analysis of variance: one way ANOVA, Two-way ANOVA.	8	5				
Referen	ce Books:							
1.	Shanti Narayan and P.	K Mittal : Differential Calculus, S. Chand Publication.						
2.	Shanti Narayan and P.	K Mittal : Integral Calculus, S. Chand Publication.						
3.	Linear Algebra : Scha	um Outlines. 6 th edition						
4.	Banerjee Pranab Kum	ar: Introduction to Bio – Statistics, S. Chand Publication.						
e-Lear	ming Source:							

				Cou	rse Artic	ulation M	latrix: (M	lapping of (COs with	POs and	PSOs)				
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	2	1	2	1	1	2	2	1	1	2	2	3	2
CO2	3	2	3	2	2	3	3	3	3	2	3	1	1	1	2
CO3	2	1	2	3	3	1	1	1	1	1	1	3	3	3	1
CO4	1	1	3	2	1	3	1	3	2	3	1	3	2	1	3
CO5	3	3	2	3	2	2	2	1	1	2	2	1	1	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21									
Course Code	BE521	Image: Title of the CourseBiochemistry & Molecular BiologyLTP							
Year	1 st	Semester	1 st	3	1	0	4		
Pre-Requisite	None	Co-requisite	None						
	This course is designed to introduce the basic concepts of Biochemistry of living systems mainly dealing with								
	biomolecules like carbohydrates, proteins, lipids, nucleic acids and their metabolic pathways that governed the entire								
Course Objectives	metabolism.	metabolism. The course is also designed to make the students understand the concepts of DNA replication, Transcription							
	and translation in prokaryotes and eukaryotes.								

	Course Outcomes
CO1	The students will learn about the carbohydrate metabolism, and its regulation; understand how the body meets the carbohydrate
	requirements, and how the carbohydrate metabolism is essential for synthetic pathways of other biomolecules.
CO2	The students will learn about structure and metabolism of lipids and its synthesis and degradation.
CO3	The students will understand about the mechanism and regulation of proteins and nucleotide synthesis and degradation.
CO4	The students will learn about the concepts of DNA replication in both prokaryotes and eukaryotes.
CO5	The students will learn about the concepts of Transcription, Protein synthesis and post translational modifications

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Carbohydrates	Overview of metabolism, high energy compounds, the reactions of glycolysis, the anaerobic fate of pyruvate, control of glycolysis. The pentose phosphate pathway, glycogen breakdown and synthesis, control of glycogen metabolism, gluconeogenesis. Overview of citric acid cycle. Synthesis of acetyl coenzyme A, enzymes of the citric acid cycle, regulation of the citric acid cycle, reactions related to the citric acid cycle.	8	CO1
2	Lipids	Lipid metabolism: fatty acid oxidation, ketone bodies, fatty acid biosynthesis, regulation of fatty acid metabolism. The mitochondrion, electron transport, oxidative phosphorylation.	8	CO2
3	Proteins and Nucleic Acids	Protein degradation, amino acid deamination, the urea cycle, breakdown of amino acids, amino acid biosynthesis, nucleotide biosynthesis by de novo and salvage pathways, nucleotide degradation.	8	CO3
4	DNA replication	Roles of DnaA, Helicase, HD protein, Primase, DNA gyrase, Topoisomerase, DNA Polymerase III, DNA Polymerase I, DNA ligase, Fidelity, DNA replication in eukaryotes: Autonomously replicating sequence, Origin recognition complex, DNA polymerases α , δ , ε , Nucleases, DNA ligase, Telomeres	8	CO4
5	Transcription and Translation	Transcription in prokaryotes: Outline of process, Promoter, RNA polymerase; Transcription in eukaryotes: Outline of process, Promoters, Enhancers, RNA polymerase I, II, III; Post transcriptional modifications: End modifications (Addition of 5' cap and 3' Poly A tail in mRNA). Translation in prokaryotes and eukaryotes: Outline of process, Types of RNA, Structure of ribosome, Aminoacyl RNA transferase, Genetic codes, Wobble hypothesis.	8	CO5
Referen	ce Books:			
1. Voe	et and Voet, Biochemist	ry,Wiley : ISBN: 978-0-471-19350-0.		
2. Nel	son and Cox, Lehninger	Principles of Biochemistry, W H Freeman & Co, ISBN: 978- 0- 716-77108-1.		
3. Bal	timore- Molecular Biol	ogy of the Cell		
4. Ber	1 njamin Levin – Genes, l	atest ed.		
5. Alb	ert B, Bray Denis et al.	Molecular Biology of The Cell, latest ed.		
6. Wa	tson, Hopkin, Roberts e	t al.: Molecular Biology of the Gene, latest ed.		
e-Lear	ning Source:			

https://drive.google.com/file/d/1nG5TjtIU2XmALLQTlkg4V_salq2V2f_S/view?usp=sharing

						Course	e Artici	lation	Matrix: (Mapping of	of COs wit	h POs and P	SOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3		1	1	1				3	1	2	2
CO2	3	3	2	3		1	1	1				3	2	2	2
CO3	3	3	2	3		1	1	1				3	2	2	2
CO4	3	3	2	3		1	1	1				3	2	2	2
CO5	3	3	2	3		1	1	1				3	2	2	2
				1	- Low (Correla	tion; 2-	Moder	ate Corr	elation; 3-	Substantia	l Correlation	1		

Effective from Session: 2020-21											
Course Code	CS 532	Title of the Course	Bioinformatics And Ipr Related Issues	L	Т	Р	С				
Year	Ι	Semester	Ι	3	1	0	4				
Pre-Requisite	None	Co-requisite	None								
Course Objectives	The objective	of this course is to get a contract the IPR and its related	acquainted with C, Perl & Python language for the simulation d issues for proper scientific conscience and ethical values a	on of b	iologica learners	al data. I	It				

	Course Outcomes
CO1	Understand the basics of programming syntaxes
CO2	Perform and write programs in C language and understanding the basics of file handling, exception handling.
CO3	Understand and apply the different concepts of Perl Programming languages with its various features and properties.
CO4	Apply the knowledge of PHP language and HTML tags for web page designing and its development.
CO5	Distinguish and Explain various forms of IPRs, identify criteria's to fit one's own intellectual work in particular form of IPRs and apply
	statutory provisions to protect particular form of IPRs.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to programming languages	Introduction - Flowcharts - Algorithms - Pseudocodes – Programming languages: data types, variables, constants, operators, input output, expressions, control flow constructs (conditional and loop statements) -functions, arrays, structures and unions - Pointers - Data structures - File handling.	8	CO1
2	Procedural languages	Programming in C Procedural languages - C language introduction: Variables, Data Types - Arrays (one and two dimensional arrays)- Functions: Types, Parameters, Recursion, Function prototype, Standard C library - Structures. Pointers: Introduction, Pointer with variables, Arrays and Strings, Pointers and structures, Pointers and linked list - Unions - File handling: File I/O, File opening modes - C Preprocessor - Graphical Interfaces: Dialog Boxes, Dynamic Memory Allocation	8	CO2
3	PERL & PYTHON	Perl doc - Data types: scalar data (numbers and strings), lists, arrays, variables, operators, expressions, operators, control flow constructs (conditional and loop statements), miscellaneous control flow built in functions, associative arrays hashes, functions, Basic I/O, file handling.	8	CO3
4	Introduction to Web Technology	Developing web pages with HTML, PHP: Tags, Links, Tables, Forms, Frames - ASP variables and data types, language syntax, controls, structures, functions, strategies and tools for handling input and generating output, error handling.	8	CO4
5	IPR	General Introduction, Patent Claims, the Legal Decision-Making Process, Ownership of Tangibleand Intellectual Property. Patentable Subject Matter, Novelty and the Public Domain, Nonobviousness. Disclosure Requirements, Collaborative Research, Competitive Research, Recent Developments in Patent System and Patentability of Biotechnological invention, IPR issues in the Indian Context. Patents in Bioinformatics	8	CO5
Referen	ce Books:			
1.	B.W. Kernighan and I	D. Ritchie. The C Programming Language, Prentice Hall of India. ISBN: 0131103628.		
2.	E. Balagurusamy. Pro	gramming in ANSI C, Tata McGrawHill Publishing Company Limited.		
3.	James Tisdall Beginni	ng PERL for Bioinformatics – an introduction to perl biologist. O'Reilly publications.		
4.	Fundamentals of P for	· Engineers: K Bansl& P Bans		
0 I cm	ming Courses			
e-Leal	ining Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO/
СО	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502	1504
CO1	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
CO5	3	1			3	3	1	2					3	1	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2020-21												
Course Code	BE523	Title of the Course	Biochemistry and Molecular Biology Lab	mistry and Molecular Biology Lab L T P								
Year	Ι	Semester	Ι	0	0	4	2					
Pre-Requisite	None	Co-requisite	None									
Course Objectives	To understan in known and electrophores qualitative an	d the concept of various unknown samples. Bas is are also included here d quantitative analysis a	techniques required for quantification of carbohydrates, pro- ic concept of separation techniques for biological samples li 2. To learn the techniques used in molecular biology related are also a part of this course.	teins a ke chr to DN	nd nucl omatog A isolat	eic acic raphy a ion and	ls nd l its					

	Course Outcomes										
CO1	Learn and perform the techniques to determine the concentration of biomolecules such as carbohydrates and proteins from a given sample.										
CO2	Learn and perform the estimation of the nucleic acids (DNA and RNA) in unknown samples and determination of the melting temperature of										
	the nucleic acids.										
CO3	Understand and perform the different types of chromatography techniques such as TLC and Paper Chromatography.										
CO4	Comprehend and perform DNA isolation and its visualization through electrophoresis from different sources such as bacteria and plant.										
CO5	Perform the quantitative estimation of genomic DNA by determining the absorption spectra of genomic DNA and tell about the purity of the										
	DNA.										

Unit No.	Title of the Experiment	Content of Unit	Contact Hrs.	Mapped CO
1	Protein estimation	Estimation of protein by Folin's-Lowry's method.	4	CO1
2	Carbohydrate estimation	Estimation of glucose by anthrone method.	4	CO1
3	Nucleic acid estimation	Estimation of DNA by DPA method and RNA by Orcinol method.	4	CO2
4	Melting temperature determination	Determination of Tm of DNA and RNA.	4	CO2
5	Chromatography	Chromatography: Separation of amino acids, and sugars by TLC & paper chromatography.	4	CO3
6	Bacterial DNA isolation	Isolation and characterization of plasmid and genomic DNA from Bacteria followed by Agarose Gel Electrophoresis.		CO4
7	Plant DNA isolation	Isolation of plant DNA followed by Agarose Gel Electrophoresis.	4	CO4
8	Absorption spectra determination	Quantitative Estimation of genomic DNA: Determination of Absorption Spectra of genomic DNA.	4	CO5
Referen	ce Books:			
1. Kei	th Wilson John Walker John M. Walke	er "Principles and Techniques of Practical Biochemistry"		
2. Chi	rikjian "Biotechnology Theory & Tech	niques"		
3. Jos	eph Sambrook David W. Russell Joe Sa	ambrook "Molecular Cloning: A Laboratory Manual"		
4. Wi	lliam M., Ph.D. O'Leary Robert Dony V	Vu "Practical Handbook of Microbiology"		
5. Bro	own, TA "Gene cloning: An introduction	n"		
e-Lear	ming Source:			
	0			

https://vlab.amrita.edu/?sub=3&brch=77&sim=1375&cnt=2870

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	1	3	2	3	2	1		1	3			3	3					
CO2	1	3	2	3	2	1		1	3			3	3					
CO3	1	3	2	3	3	1		1	3			3	3					
CO4	1	3	2	3	3	2		1	3			3	3					
CO5	1	3	2	3	2	1		1	3			3	3					
					4 4	9				a .			10.1					

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:											
Course Code	BE-524	Title of the Course	BIOINFORMATICS AND PROGRAMMING LANGUAGE LAB	L	Т	Р	С				
Year	Ι	Semester	Ι	0	0	4	2				
Pre-Requisite	None	Co-requisite	None								
Course Objectives	After complet	ion of the course, students	s will be able to work on bioinformatics-based programming and	perfor	m differ	rent					

	Course Outcomes
CO1	Perform text based search of NCBI Entrez and EMBL-EBI SRS.
CO2	Retrieve the protein or nucleotide sequence of an organism in GenPeptformat and convert it to FastA format.
CO3	Retrieve 3-D structure of a protein from PDB and visualize it in PyMol, RasMol or DS Visualizer.
CO4	Write programs in C language based on basic Biological problems and Perform Python Programming.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Experiment No. 1	To perform text based search of a. NCBI Entrez b. EMBL-EBI SRS	8	1				
2	Experiment No. 2	To retrieve protein sequence or nucleotide sequence of an organism in GenPept format followed by its conversion into FastA format.	8	2				
3	Experiment No. 3	To retrieve 3-D structure of a protein from PDB and visualize it in PyMol, RasMol or DS Visualizer.	8	3				
4	Experiment No. 4 and 5	To write programs in C language based on basic Biological problems. Perl Programming: a. Perl basics and variables b. Control and loop statements c. Functions and subroutines d. Regular expressions e. Modules: LWP	8	4				
Reference	ce Books:							
1. Bio	oinformatics: A Practical G	uide to the Analysis of Genes and Proteins, by Andreas D. Baxevanis, B. F. Francis Ouellette, Wiley-Interscie	nce,					
2. E.	Balaguruswami, "Progra	mming with ANSI "C", Tata McGraw Hill.						
3. Beginning Perl for Bioinformatics- James Tisdall, O'Reily Publication								
4. Py	4. Python course in Bioinformatics by Katja Schuerer and Catherine Letondal							
e-Lear	ning Source:							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO	PO	PO	PO	PO	PO	DO7	DOS	DOO	DO10	DO11	DO12	DCO1	DSO2	DCO2
СО	1	2	3	4	5	6	P07	PO7 PO8	08 109	FOID	POII	F012	P301	P502	P303
CO1	2	1		1	3			1				1	3	2	2
CO2	3	1	2	1	3			1	1			1	3	3	1
CO3	2	1	2	2	3				1			1	2	2	1
CO4	3	3	2	1	3			1	1			2	3	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021	1-2022						
Course Code	BE525	Title of the Course	Biomolecular modeling and simulation	L	Т	Р	С
Year	Ι	Semester	Π	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	The objective modeling and modeling of h	e of the course is to lead d simulation. The appl	arn and understand the entire concepts of in silico drug d ication of the course focuses on current trends and rece	esign ent de	through velopm	molec ents in	ular the

	Course Outcomes
CO1	Explain the concepts of secondary and tertiary structure prediction of proteins.
CO2	Understand the principle of molecular docking and its applications to biological R&D.
CO3	Understand the concept and applications of protein modeling and its implications for biological research.
CO4	Understand the basic concept of Monte Carlo (MC) and molecular dynamic (MD) simulation and their applications.
CO5	Describe nucleic acid secondary structure prediction and its relevance in RNA-based drug design and development

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Protein Modeling	Basic concepts, Generations of secondary structure prediction methods, Chou-Fasman, and GOR algorithms, Knowledge- and Ab-initio-based methods of tertiary structure prediction, 3D model evaluations and visualization.	8	CO1
2	Molecular Interactomics	Basic principles and concepts, Rigids and flexible molecular docking, Molecular scoring functions, Analysis of molecular interactions, Common software used in molecular docking viz., AutoDock Tools, GOLD, FlexX, ICM, and Dock. Implications of molecular docking concepts in Biomedical and Life Science R&D.	8	CO2
3	Concepts of Molecular Modeling	Molecular mechanics, Simulations of Free Energy changes, Force fields, Common force fields, and their uses. Energy minimization, Programs, and Web Servers useful in energy minimization. The implication of energy minimization in protein modeling.	8	CO3
4	Molecular Dynamics Simulation	Basic concepts, Molecular forces stabilizing 3D structure of biological macromolecules, Simulation methods for conformational analysis, Design constraints, Recent trends, Applications, Pros, and Cons.	8	CO4
5	Nucleic acid Structure prediction	Basic concepts, Current algorithms for RNA secondary structure prediction, Methods viz., Ab-initio, and Comparative approach, Performance evaluation of RNA prediction programs. Applications in context to Proteogenomics	8	CO5
Referen	ce Books:			
Andrew	R. Leach. Molecular N	Modelling Principles and applications. Prentice Hall.		
Fenniri,	H. "Combinatorial Ch	emistry – A practical approach", Oxford University Press, UK.		
Lednicer	r, D. "Strategies for Or	ganic Drug Discovery Synthesis and Design"; Wiley International Publishers.		
Gordon,	E.M. and Kerwin, J.F	"Combinatorial chemistry and molecular diversity in drug discovery". Wiley-Liss Publishers		
Bioinfor	matics: Sequence and	Genome Analysis, David W. mount, CSH Laboratory Press, 2001, ISBN 9780879695972.		
e-Lear	ning Source:			
https://v	lab.amrita.edu/index.p	hp?sub=3&brch=275∼=1427&cnt=1		
https://v	lab.amrita.edu/index.p	hp?sub=3&brch=275∼=1443&cnt=1		
https://w	www.sib.swiss/bioinfor	matics for all/		

https://www.sib.swiss/bioinformatics-for-all/

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO-PSO	PO1	PO2	DO3	PO4	PO5	POG	PO7	POS	POO	PO10	PO11	PO12	DSO1	DSO2	DSO2
СО	FOI	F02	103	r04	105	100	107	108	109	1010	FOIT	F012	1301	F302	1303
CO1	1	1	1	2	2	1	1	2	1	1	1	3	2	3	3
CO2	2	2	1	2	3	1	1	2	1	1	1	1	2	2	3
CO3	2	2	2	2	3	1	1	1	1	1	2	1	3	3	3
CO4	1	2	2	2	2	1	3	2	2	1	2	3	3	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020) -21								
Course Code	BE 526	Title of the Course	Algorithms in Molecular Biology	L	Т	Р	С		
Year	Ι	Semester	П	3	1	0	4		
Pre-Requisite	None	Co-requisite	None						
Course Objections	The objective	e of the course is to ge	t a detailed overview of various universal sets of algorith	ms av	ailable	for solv	/ing		
Course Objectives	model with F	complex prediction problems. It mainly introduces with Genetic algorithm, Artificial Neural Network, Hidden markov model with Fuzzy logic as a part of search prediction and optimization strategies.							

	Course Outcomes
CO1	Explain the basics of genetic algorithms, genetic operators and schema theorem.
CO2	Understand the proper application and execution of genetic algorithms.
CO3	Understand the concept and applications of Artificial neural networks in biological sciences.
CO4	Understand the concept and functionality of Hidden Markov modelsand its application in the field of bioinformatics.
CO5	Understand the basics of fuzzy logic and its applications.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Genetic Algorithms	Genetic Algorithms: Basic concepts and applications; Encodings and optimization problems, Search Spaces as Hypercubes, Hyperplane sampling, GA Operators and Schemata; The Schema Theorem, Concept of Reduced Surrogates.	8	CO1				
2	An Executable Model of the genetic algorithm	A generalized form based on Equation Generators, Generating String Losses for 1-point crossover, Generating String Gains for 1-point crossover. Other Models of Evolutionary Computation: Genitor, CHC; Hill-climbers or Hyperplane Samplers.	8	CO2				
3	Artificial Neural Networks	A Simple Neuron, Firing rule, Network layers, Architectures of Artificial Neural Network: Feed-Forward networks, Feed-Back networks, Perceptrons, Pattern recognition problems, Back Propagation Algorithm, Applications of Neural Networks.	8	CO3				
4	Hidden Markov Models	Applications of HMM: finding CpG islands in long DNA sequence, Solution of the decoding problem: Viterbi Algorithm and its complexity, Posterior decoding through forward and backward algorithms, Profile HMM: ungapped profile alignment. Derivation of profile HMM for multiple sequence alignments; Alignment of the sequences to a Profile HMM.	8	CO4				
5	Fuzzy Logic	An Introduction of Fuzzy Logic, Fuzzy Vs Non-Fuzzy, K-Mean Clustering, Fuzzy C-Mean Clustering, Basic tipping problems.	8	CO5				
Referen	ce Books:							
Mount I	OW 'Bioinformatics: See	quence and genome analysis', CBS publications.						
Andrew	Leach; Molecular Mod	elling: Principles and Applications (2nd Edition), Prentice Hall, 2001, ISBN 13: 9780582382107						
Lesk 'Introduction to Bioinformatics', Oxford publications.								
Page G 'Algorithms in Bioinformatics'.								
e-Lear	ning Source:							
Artificia	l Intelligence & Molecu	alar Biology Lawrence Hunter http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.662	&rep=rep1&	ktype=pdf				

National Center for Biotechnology Information, www.ncbi.nlm.nih.gov

						Course	Articu	lation N	Aatrix: (N	Iapping of	COs with P	Os and PSO	s)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	1	1	1	1	1	1	2	3	1	1
CO2	3	3	3	3	3	1	1	1	1	2	2	2	3	2	3
CO3	3	2	3	3	3	2	1	2	1	1	2	2	3	2	2
CO4	3	3	3	3	2	2	1	1	1	2	1	2	3	2	3
CO5	3	3	3	3	2	2	1	1	1	2	1	2	2	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021-2022										
Course Code	BE527	Title of the Course	Metabolomics		Т	Р	С			
Year	Ι	Semester	I		1	0	4			
Pre-Requisite	None	Co-requisite	None							
Course Objectives	The objective knowledge o	e of the course is to lead f their respective datab	arn and understand the metabolic process of various Bion ases. It also underlines the basic Engineering and Recon	nolecu structi	les alor onal str	ng with rategies	the for			

	Course Outcomes							
CO1	Understand the concept of metabolic pathways for the biomolecules such as carbohydrates and lipid and their feedback control.							
CO2	Understand the enzymes and their classification. The students will also learn about databases and information systems related to enzymes.							
CO3	Understand and learn about the various metabolic pathway databases related to the enzymes.							
CO4	Understand the concepts related to the engineering of the metabolic pathways through the mathematical and dynamic representation of these							
CO5	pathways.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Metabolism	Carbohydrate metabolism, Lipid metabolism, Transport metabolism; Significance of anaplerotic reactions and amphibolic pathways; Feedback control of metabolic pathways	8	CO1					
2	Enzymes	Classification of enzymes; Enzymes, Compounds and Reactions databases: LIGAND- Biochemical compounds and reactions, ENZYME–Enzymes, BRENDA-Comprehensive Enzyme Information System.	8	CO2					
3	Metabolic Pathway	Classification of metabolic pathways (with respect to enzymes); Metabolic Pathway databases: KEGG, EMP, Malaria parasite metabolic pathways, EcoCyc, Boehringer Mannheim-Biochemical Pathways.							
4	Engineering of metabolic pathways	Mathematical representation of metabolic pathways, Generation and dynamic representation of metabolic pathways, Deriving common principles from the metabolic pathways knowledge: Deriving sets of enzymes specific for various reactions	8	CO4					
5	Reconstruction of metabolic pathway	Predicting regulatory elements, Identifying targets; Full genome annotation through knowledge of metabolic pathways.	8	CO5					
Reference Books:									
Bioinfor Inc., Pub	Bioinformatics A Practical Guide to the Analysis of Genes and Proteins. Ed. Andreas D. Baxevanis and B. F. Francis Ouellette. John Wiley & Sons, Inc., Publications (For Micro array).								

Charles M. Perou, 2000. Molecular portraits of human breast tumors. Nature, 406: 747-752.

Christopher H. Schilling et al. 1998. The underlying pathway structure of biochemical reaction networks. PNAS. 95:4193-8. Christopher H. Schilling et al. 1999. Towards metabolic phenomics: Analysis of Genomics Data Using Flux Balances, Biotechnology. Prog. 15: 288-295. Chu et al. 1998. The Transcriptional program of sporulation in budding yeast. Science. 282:699-705.

e-Learning Source:

https://vlab.amrita.edu/index.php?sub=3&brch=276&sim=1456&cnt=1 https://vlab.amrita.edu/index.php?sub=3&brch=276&sim=1487&cnt=1

https://www.sib.swiss/bioinformatics-for-all/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	DO1	DOJ	DO2	DO4	DO5	DOG	DO7	DO	DOO	PO10	PO11	DO12	DSO1	DEO2	DSO2
СО	POI	PO2	P05	P04	POS	POo	P07	PUs	P09	P010	POIT	POIZ	P301	P302	P305
CO1	1	1	1	1	1	1	1	1	1	1	1	3	2	3	3
CO2	1	1	1	1	1	1	1	1	1	1	1	3	2	2	3
CO3	1	1	1	1	1	1	1	1	1	1	1	3	3	3	3
CO4	1	1	1	1	2	1	1	1	1	1	1	3	3	3	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21										
Course Code	BE528	Title of the Course	Sequence Analysis and Phylogenetics	L	Т	Р	С			
	-	~					L_			
Year	I	Semester	II	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							
Course Objectives	The objective of the course focuses on the various strategies available for Pairwise and Multiple sequence alignment studies. The course also outlines the detailed overview of phylogenetic studies as an important application of the multiple									
	sequence alig	sequence alignment approach.								

	Course Outcomes
CO1	Understand the sequence alignment, and compare with its other sequences available in specific databases, theoretical and computational analysis
	of the algorithm.
CO2	Understand the different approaches of matrices and problem solving, construction of PAM and BLOSSOM matrices, and their applications
CO3	Understand the uses of various software and tools to validate the sequence search and similarity to others sequences and display, annotation, and
	retrieval tools of biological data.
CO4	Understand and development of the Phylogenetics and phylogenetic trees; Reconstruction of Phylogenetic trees by using bioinformatics tools.
CO5	Explain applications of algorithms in the area of biological and biomedical sciences, applications and overview of MEGA software.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Sequence Alignment	Hamming Distance, Dot-plot Matrix, Dynamic programming strategies and their	8	CO1				
		complexities: Global alignment (Needleman and Wunsch algorithm), Global						
		alignment in linear space: Divide and Conquer algorithm, Local alignment (Smith and Waterman algorithm). End space free clienment. Con populties						
2	Database similarity searching	FASTA and BLAST PSI- BLAST PHI- BLAST Amino acid substitution matrices	8	CO2				
2	Database similarity scarening	and their applications: Construction of PAM matrix, BLOSUM matrix.	0	002				
3 Multiple sequence alignment		Introduction and significance of MSA, Algorithms for MSA: Center Star algorithm,	8	CO3				
		Multiple alignments with Consensus; Alignment of string to a profile; Pairwise and Iterative Multiple Alignment strategies, Common MSA tools: Clustal W, Pile Up.						
4	Phylogenetics	Distance-based methods: Ultrametric property and Additive property, UPGMA and Naighbor joining methods, Jukes Captor model, Rootstrapping	8	CO4				
	Character based methods	Character-based methods: Occam's Razor: Parsimony: Small parsimony (Fitch's	0					
5		Algorithm), Weighted parsimony (Sankoff's Algorithm) and large parsimony	8	C05				
		problems. Probabilistic approaches like the Maximum likelihood method, Overview of MEGA software.						
Referen	ce Books:							
A.D. Baxevanis et al., Current Protocols in Bioinformatics, Wiley Publishers.								
David W. Mount Bioinformatics, Cold Spring Harbor Laboratory Press, ISBN 0-87969-608-7.								
Computational Molecular Biology by P. A. Pevzner, Prentice Hall of India Ltd, ISBN 81-203-2550-8.								
D.E. Krar	ne and M.L. Raymer Fundamenta	l concepts of Bioinformatics, Pearson Education ISBN 81-297-0044-1.						

N. Gautham, Bioinformatics Narosa publications. ISBN-13: 9781842653005.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	DO2	DO2	DO4	DOS	DOC	DO7	DOP	DOO	DO10	DO11	DO12	DSO1	DECO	DCO2
СО		PO2	P05	P04	P05	POo	F07	100	109	1010	FOIL	F012	P301	P302	P305
C01	1	1	1	2	2	1	1	2	1	1	1	3	2	3	3
CO2	2	2	1	2	3	1	1	2	1	1	1	1	2	2	3
CO3	2	2	2	2	3	1	1	1	1	1	2	1	3	3	3
CO4	1	2	2	2	2	1	3	2	2	1	2	3	3	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD
	Sign & Star of Hold

Effective from Session: 2021-2022							
Course Code	CS513	Title of the Course	Database Management System	L	Т	Р	С
Year	Ι	Semester	II	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	The course c between diffe helps in the technologies, different type	urriculum helps to unc erent records and databa connectivity of large which help in resolving s. It removes multiple d	lerstand the designing of the database models, understand uses. Its major objective is storage, manipulation, and worl databases with various webpages and also introduces the integrity, and atomicity problems. It helps in the transfo uplicacy, allows access to multiple users and helps in data p	ling of cing w the c ormation rotection	f the re ith tran oncept on of on on	lationsl saction of sev le type	iips s. It eral into

	Course Outcomes						
CO1	Know about the concepts of database, their types, design concepts and ER-models.						
CO2	Know about the concepts of relational databases, working with SQL for frontend development.						
CO3	Know about the concepts of query optimization, transaction processing and concurrency control.						
CO4	Know about the concepts of database technologies, distributed database environment.						
CO5	Know about the concept of data warehouse, data cleaning and data integration.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	DBMS	Introduction - concepts and overview - Types DBMS- Relational and transactional Database, Database planning and Design concepts: General Database Planning and Design – Documentor forms - preparation and architecture. Entity-Relational ship Model- entities, Attributes, keys, tables design, relationships, roles and dependencies. Advanced E-R model concepts.	Database planning and Design concepts: General Database Planning and Design – Documentor forms - preparation and architecture. Entity-Relational ship Model- entities, 8 Attributes, keys, tables design, relationships, roles and dependencies. Advanced E-R model concepts.						
2	Relational DB	roduction to relational DB and transactions. SQL-statements-Data Definition- unipulation-control-Objects, - Views, sequences and Synonyms. Working with code and 8 CO2 ms- Frontend development-query sublanguage-modifying relations in SQL.							
3	Internals of RDBMS	ysical data structures, query optimization. Join algorithm statistics and cost base stimization. Transaction processing. Concurrency control and recovery management. 8 CO3 cansaction model properties, state serializability, lock base protocols, two phase locking.							
4	Database technologies	DBC, ODBC standard and CORBA - extended entity relationship model, object data model JML diagram. File organizations and data structures. Distributed database environment and 8 CO4 ts overview. Different databases and internet. Use of XML.							
5	Datawarehouse	Descriptive Data Summarization, Data Cleaning, Data Integration and Transformation, Data Reduction, Data Discretization and Concept Hierarchy Generation, Data Warehouse and OLAP technology - A Multidimensional Data Model - From Data Warehousing to Data Mining - Efficient Methods for Data Cube Computation - Further Development of Data Cube and OLAP Technology.	8	CO5					
Referen	Reference Books:								
Abrahan	n Silberschatz, Henry l	F. Korth and S. Sudhashan, Database system concepts. McGraw Hill Publications.							
Elmasri	Elmasri Ramez and Novathe Shamkant, "Fundamentals of Database systems", Benjamin cummings Publishing Company. ISBN-10: 0321369572.								
P.Ramakrishnan Rao: Database Management system, McGraw Hill Publications. 9780071230575									
Jim Gray and A.Reuter "Transaction processing : Concepts and Techniques" Morgan Kaufmann Press. ISBN-10: 1558601902									
V.K .Jai	V.K. Jain. Database Management system. Dreamtech Press ISBN 8177222279								
Date C.J	. "Introduction to data	base management" Wesley.							
Ullman,	JD "Principles of Data	base systems" Galgottia publication							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	DO3	PO4	PO5	POG	PO7	POS	PO0	PO10	PO11	PO12	DSO1	DSO2	DSO2
СО	FOI	F02	103	F04	105	100	107	108	109	1010	FOIT	F012	1301	F302	1303
CO1	1	2	2	3	1	2	1	3	1	2	1	2	2	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	2	3	3
CO3	2	2	2	2	1	1	3	2	3	1	1	2	3	3	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	3	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-2021							
Course Code	BE529	Title of the Course	Modeling and Phylogenetics Lab	L	Т	Р	С
Year	Ι	Semester	II	0	0	8	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	Develop a know-how of the modeling of proteins and the procedures involved in the phylogenetic analysis.						

	Course Outcomes						
CO1	To be able to make chemical structures of simple and complex molecules using multiple tools.						
CO2	To examine the effects of energy minimization and mutations of protein molecules through the respective tools.						
CO3	Develop an understanding of predicting/modeling and validating protein secondary, tertiary and quaternary structures.						
CO4	To appreciate the applications of multiple sequence alignment tools.						
CO5	Develop a thorough understanding of phylogenetic analysis and its evaluation using various tools.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	ChemSketch	To draw the 2D and 3D structures of chemical compounds in the ChemSketch software.	4	CO1					
2	Argus Lab	To build the dipeptides, tripeptides and oligonucleotides molecules in the Argus Lab.	4	CO1					
3	Energy minimization	To carry out the Energy minimization studies of the biological molecules using SPDB viewer by applying the GROMOS force field.	4	CO2					
4	Molecular dynamics	To virtually mutate the small parts of protein molecules and carry out its Molecular dynamics studies with the help of GROMACS.	8	CO2					
5	Secondary structure prediction	To perform the secondary structure prediction studies of the given protein using GOR and nnPredict tools available at ExPASy sever.	4	CO3					
6	Homology modeling	To perform the homology based comparative protein modeling of the given protein using MODELER.	8	CO3					
7	Model Validation	To validate the Homology based predicted model using following tools: a. WHATIF b. PROSA c. PROCHECK d. VERIFY 3D	4	CO3					
8	Multiple sequence alignment	To carry out multiple sequence alignment of the given nucleotide sequences using Clustal W and T-Coffee tools and draw out the important inferences.	4	CO4					
9	Phylogenetic analysis	To perform the phylogenetic analysis of the given protein sequences of a protein family using MEGA/PHYLIP package and draw the important inferences.	8	CO5					
Referen	ce Books:								
 Baxevanis A.D and Ouellette B.F.F, Bioinformatics – A Practical Guide to the Analysis of Genes and Proteins, 3rd edition, New York: John Wiley & Sons Inc. Pub, 2006. 									
2. Mani K.and Vijayaraj, Bioinformatics A practical Approach, Coimbatore : Aparna Publication, 2004.									
e-Lea	e-Learning Source:								
1. <u>h</u>	ttps://vlab.amrita.edu/in	dex.php?sub=3&brch=274							
2. h	ttps://vlab.amrita.edu/in/	2 https://wlab.amrita.edu/index.nbn?sub=3&brch=275							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	DO1	DO3	DO2	PO4	DO5	DOG	DO7	DOS	DOD	PO10	DO11	DO12	DSO1	DEO2	DSO2
CO	POI	P02	P03	P04	P05	PO6	PO/	P08	P09	9 PO10	POII	POIZ	P301	P302	PS03
CO1	1	2	1	1	3	2	1	1	3	1	0	3	3	3	2
CO2	2	2	3	2	3	3	1	1	3	1	0	3	3	3	2
CO3	2	3	3	3	3	3	1	1	3	1	0	3	3	3	2
CO4	2	3	3	3	3	3	1	1	3	1	0	3	3	3	3
CO5	2	2	3	2	3	3	1	1	3	1	0	3	3	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD